Modeling Optimization Problems

Pramesh Kumar

IIT Delhi

January 30, 2024

Outline

Motivation

Optimization Framework

Standard form and reformulations

Examples

Motivation

What is optimization?

(Merriam-Webster Dictionary) An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible.

Motivation

(Maximum Area Problem)

You have 80 meters of wire and want to enclose a rectangle as large as possible (in area). How should you do it?

Motivation

(Production Problem) A factory can produce two products, A and B. The production of each item of A takes 2 hours, and that of item B takes 7 hours. Further, each item of products A and B takes 22 and 41 ft^3 storage capacity, respectively. The manager gets a profit of \$30 and \$50 by producing each item of A and B resp. Assuming that there is an 88-hour limit on the number of hours of operating the factory and the maximum storage capacity of the factory is $9,000ft^3$, how many items of A and B should the manager decide to produce to maximize the profit?

Outline

Motivation

Optimization Framework

Standard form and reformulations

Examples

Common Framework

Components of an optimization problem

- Decisions
- Constraints
- Objective

Optimization seeks to choose some decisions to optimize (maximize or minimize) an objective subject to certain constraints.

Common Framework

 $\begin{array}{ll} \text{Given } f,g_i,h_i:\mathbb{R}^n\mapsto\mathbb{R}\\ &Z= \underset{\mathbf{x}}{\text{minimize}}\underset{\mathbf{x}}{\text{maximize}} &f(\mathbf{x}) & (1a)\\ &\text{subject to} & g_i(\mathbf{x})\leq 0, \forall i=1,2,...,p & (1b)\\ &g_j(\mathbf{x})\geq 0, \forall j=1,2,...,q & (1c)\\ &h_k(\mathbf{x})=0, \forall k=1,2,...,r & (1d) \end{array}$

• Decisions: **x**, Objective: $f(\mathbf{x})$, and Constraints: (1b)-(1d)

▶ (1b), (1c), and (1d): set of "≤", "≥", and equality constraints

• $\mathcal{X} = {\mathbf{x} \in \mathbb{R}^n : (1b) - (1d)}$ define the feasible region.

- Any $\hat{\mathbf{x}}$ satisfying all the constraints is a feasible solution.
- Any $\mathbf{x}^* \in \mathcal{X}$ satisfying $f(\mathbf{x}^*) \leq f(\mathbf{x}), \forall \mathbf{x} \in \mathcal{X}$ is an optimal solution.
- $f(\mathbf{x}^*)$ is known as optimal objective value.

A few classes of optimization problems

- Linear optimization: f, g_i, h_i are all affine functions of continuous variables x.
- ▶ Non-linear optimization: At least one of *f*, *g_i*, *h_i* is non-linear function of continuous variables *x*.
 - Convex optimization: All functions are convex and feasible region is a convex set
- (Mixed) Integer optimization: Some of the variables x are restricted to be integers.
- (Mixed) Integer Non-linear optimization: Some of the variables x are restricted to be integers and at least one of f, g_i, h_i is non-linear.

Difficulty of solving above classes rises significantly as we go from above to below.

A few definitions

Definition (Maximum) Let $S \subseteq \mathbb{R}$. We say that x is a maximum of S iff $x \in S$ and $x \ge y, \forall y \in S$.

Definition (Minimum) Let $S \subseteq \mathbb{R}$. We say that x is a minimum of S iff $x \in S$ and $x \leq y, \forall y \in S$.

Definition (Bounds) Let $S \subseteq \mathbb{R}$. We say that u is an upper bound of S iff $u \ge x, \forall x \in S$. Similarly, l is a lower bound of S iff $l \le x, \forall x \in S$.

Definition (Supremum) Let $S \subseteq \mathbb{R}$. We define the supremum of S denoted by $\sup(S)$ to be the smallest upper bound of S. If no such upper bound exists, then we set $\sup(S) = +\infty$.

Definition (Infimum) Let $S \subseteq \mathbb{R}$. We define the infimum of S denoted by $\inf(S)$ to be the largest lower bound of S. If no such lower bound exists, then we set $\inf(S) = -\infty$

Definition If $x \in S$ such that $x = \sup(S)$, we say that supremum of S is achieved (which means that there is a maximum to the problem). Similar definition for whether infimum is achieved.

General Formulation of LP

$Z = \minimize / \maximize$	$\mathbf{c}^T \mathbf{x}$	(2a)
subject to	$\mathbf{a}_i^T \mathbf{x} \le b_i, \forall i \in C_1$	(2b)
	$\mathbf{a}_j^T \mathbf{x} \ge b_j, \forall j \in C_2$	(2c)
	$\mathbf{a}_k^T \mathbf{x} = b_k, \forall k \in C_3$	(2d)
	$x_u \ge 0, \forall u \in N_1$	(2e)
	$x_v \le 0, \forall v \in N_2$	(2f)
	x_w free , $\forall w \in N_3$	(2g)

where, $C_1, C_2, C_3 \subseteq \{1, ..., m\}$, $N_1, N_2, N_3 \subseteq \{1, ..., n\}$

More definitions

Definition (Hyperplane) { $\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} = b$ }

Definition (Halfspace) $\{\mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T \mathbf{x} \ge b\}$

Definition (Polyhedron) A set $P \subseteq \mathbb{R}^n$ is called a polyhedron if P is the intersection of a finite number of halfspaces. $P = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b} \}$

Definition (Polytope) A bounded polyhedron is called a polytope. Question Is $\{x \in \mathbb{R}^n : Ax = b, x \ge 0\}$ a polyhedron?

Definition (Convex Sets) A set $S \subseteq \mathbb{R}^n$ is a convex set if for any $\mathbf{x}, \mathbf{y} \in S$, and $\lambda \in [0, 1]$, we have $\lambda \mathbf{x} + (1 - \lambda)\mathbf{y} \in S$. Question Is polyhedron $P = \{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}\}$ a convex set?

Definition (Convex combination) $\mathbf{x} \in \mathbb{R}^n$ is said to be convex combination of $\mathbf{x}^1, ..., \mathbf{x}^p \in \mathbb{R}^n$ if for $\lambda_1, ..., \lambda_p \ge 0$ s.t. $\sum_i^n \lambda_i = 1$, \mathbf{x} can be expressed as $\mathbf{x} = \sum_i^n \lambda_i \mathbf{x}^i$.

Definition (Extreme point) Let P be a polyhedron. Then, $x \in P$ is an extreme point of P if we cannot express x as a convex combination of other points in P.

Theorem

Let P be a non-empty polyhedron. Consider $LP \max{c^T x \ s.t. \ x \in P}$. Suppose the LP has at least one optimal solution and P has at least one extreme point. Then, above LP has at least one extreme point of P that is an optimal solution.

Possible states of optimization problems

An optimization problem may have the following states:

- ▶ Infeasible (max problems, $Z = -\infty$ and min problems, $Z = +\infty$)
- Feasible, optimal value finite but not attainable
- Feasible, optimal value finite and attainable
- Feasible, but optimal value is unbounded (max problems, $Z = +\infty$ and min problems, $Z = -\infty$)

Outline

Motivation

Optimization Framework

Standard form and reformulations

Examples

Standard form and reformulations

Standard Form of LP¹

$$Z = \underset{\mathbf{x}}{\underset{\mathbf{x}}{\text{minimize}}}$$
 $\mathbf{c}^T \mathbf{x}$ (3a)subject to $A\mathbf{x} = \mathbf{b}$ (3b) $\mathbf{x} \ge 0$ (3c)

where, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ (m < n fat matrix), $\mathbf{b} \in \mathbb{R}^m$

¹Following the convention by Bertsimas and Tsitsikilis Standard form and reformulations

Transformation to Standard Form

- \blacktriangleright To convert maximization of $\mathbf{c}^T\mathbf{x}$ to minimization , write min $-\mathbf{c}^T\mathbf{x}$
- $A\mathbf{x} \leq \mathbf{b} \implies A\mathbf{x} + \mathbf{s} = \mathbf{b}, \mathbf{s} \geq 0$, s are called slack variables
- $\bullet A\mathbf{x} \ge \mathbf{b} \implies A\mathbf{x} \mathbf{s} = \mathbf{b}, \mathbf{s} \ge 0$
- $x_i \leq 0$. Define $y_i = -x_i$, write $y_i \geq 0$
- ▶ Eliminating free variables. Define $x_i = x_i^+ x_i^-$, write $x_i^+, x_i^- \ge 0$

Pointwise maximum/minimum, no problem!

How to linearize functions such as $\max_{i} \{\mathbf{a}_{i}^{T}x + b_{i}\} \& \min_{i} \{\mathbf{a}_{i}^{T}x + b_{i}\}$? • Define $y = \max_{i} \{\mathbf{a}_{i}^{T}\mathbf{x} + b_{i}\} \implies y \ge \mathbf{a}_{i}^{T}\mathbf{x} + b_{i}, \forall i$ • Define $y = \min_{i} \{\mathbf{a}_{i}^{T}\mathbf{x} + b_{i}\} \implies y \le \mathbf{a}_{i}^{T}\mathbf{x} + b_{i}, \forall i$ How about the following problem?

 $\|\mathbf{x}\|_1 = \sum_i |x_i|$ Z = minimize(4a) $\mathbf{x} \ge 0$ subject to $A\mathbf{x} = \mathbf{b}$ (4b) ▶ Note $|x_i| = \max\{x_i, -x_i\}$. Define $y_i = |x_i|$ Z = minimize $\sum_{i} y_i$ (5a) $\mathbf{x} \ge 0$ v $A\mathbf{x} = \mathbf{b}$ subject to (5b) (5c) $y_i \geq x_i, \forall i$ $y_i > -x_i, \forall i$ (5d) Standard form and reformulations 18

Pointwise maximum/minimum, no problem!

How about the following problem?

 $\|\mathbf{x}\|_{\infty} = \max_{i} \{|x_i|\}$ Z = minimize(6a) $\mathbf{x} \ge 0$ subject to $A\mathbf{x} = \mathbf{b}$ (6b) • Define $y = \max_i \{|x_i|\}$ Z = minimize(7a) y $\mathbf{x} \ge 0, y$ subject to $A\mathbf{x} = \mathbf{b}$ (7b) (7c) $y > x_i, \forall i$

$$y \ge -x_i, \forall i$$
 (7d)

Standard form and reformulations

Linear Fractional Program, no problem!

(Assume that $\mathbf{e}^T \mathbf{x} + f > 0$ for any \mathbf{x} satisfying $A \mathbf{x} = \mathbf{b}, \mathbf{x} \ge 0$)

$$Z = \underset{\mathbf{x} \ge 0}{\text{minimize}} \qquad \qquad \frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T x + f} \qquad (8a)$$

subject to
$$A\mathbf{x} = \mathbf{b} \qquad (8b)$$

• Define $\mathbf{y} = \frac{\mathbf{x}}{\mathbf{e}^T x + f}, z = \frac{1}{\mathbf{e}^T \mathbf{x} + f}$. We can equivalently write above program as an LP.

 $Z = \underset{\mathbf{y}, z}{\text{minimize}} \qquad \mathbf{c}^T \mathbf{y} + dz \qquad (9a)$ subject to $A\mathbf{y} - \mathbf{b}z = 0 \qquad (9b)$

$$\mathbf{e}^T \mathbf{y} + f z = 1 \tag{9c}$$

$$a \ge 0$$
 (9d)

Standard form and reformulations

Linear Integer Program

$$Z = \underset{\mathbf{x}}{\text{minimize}} \qquad \mathbf{c}^{T}\mathbf{x} \qquad (10a)$$

subject to
$$A\mathbf{x} = \mathbf{b} \qquad (10b)$$
$$x_{i} \in \mathbb{Z}_{+}, i = 1, ..., p \qquad (10c)$$
$$x_{i} \in \mathbb{R}_{+}, i = p + 1, ..., n \qquad (10d)$$

- Generally, solving IP is more difficult than solving an LP. We use various tools from LP to approach this difficult problem.
- Better formulating the problem makes a lot of difference.

Outline

Motivation

Optimization Framework

Standard form and reformulations

Examples

(Fleet sizing Problem) CEGE 5214 A transit agency is going to optimize its fleet size and type to maximize its revenue. Possible vehicle types are:

- ▶ Vans, capacity 6, purchase cost \$20, projected revenue \$96
- Regular buses, capacity 28, purchase cost \$120, projected revenue \$400
- Articulated buses, capacity 56, purchase cost \$220, projected revenue \$900

Constraints:

- Available budget is \$2,000
- The agency has 25 drivers who have 20% vacation/sick/no-show rate
- ► The fleet should provide a minimum capacity of 450
- At least 30% of the fleet should be vans for demand-responsive service
- At least 10 regular buses are needed for the fixed routes
- Exactly 2 articulated buses are needed for an express route

(Support Vector Machine Problem) Given two groups of data points in \mathbb{R}^d , $A = \{x_1, ..., x_n\}$ and $B = \{y_1, ..., y_m\}$, find a plane that separates them.

Network Flow Problems

(Minimum cost flow problem) Given a directed graph G(N, A), cost of traversing links $c : A \mapsto \mathbb{R}$, lower and upper bounds (capacity) on the flow on links $l : A \mapsto \mathbb{R}$ and $u : A \mapsto \mathbb{R}$ resp., and supply/demand at each node $b : N \mapsto \mathbb{R}$, find the least cost shipment of a commodity. Note b(i) > 0 for a supply nodes, b(i) < 0 for demand nodes, and b(i) = 0 for transshipment nodes.

(Shortest path problem) Given a directed graph G(N, A), cost of traversing links $c : A \mapsto \mathbb{R}$, find the shortest path from $s \in N$ to $t \in N$.

(Maximum flow problem) Given a directed graph G(N, A), cost of traversing links $c : A \mapsto \mathbb{R}$, and capacities of links $u : A \mapsto \mathbb{R}$, find the maximum flow possible to send from $s \in N$ to $t \in N$.

(Assignment problem) Given a bipartite graph $G(N_1 \cup N_2, A)$ and cost of assignment $c : A \mapsto \mathbb{R}$, find the least cost assignment of items in N_1 to items in N_2 .

(Transportation Problem) We have n factories each supplying a_i units of construction lumber and m cities each with b_i demand of lumber. If the transportation cost of each unit from factory i to city j is c_{ij} , formulate a program that minimizes the total transportation cost while serving the demand in all the cities.

Integer Problems

(Vertex cover problem) Given a graph G(N, A), find the smallest set of vertices that touch every edge of the graph.

(Traveling Salesman Problem) A salesman needs to visit a number of places in a day. How should he schedule her trip so that the total distance is shortest (or the total cost is smallest)?

(Knapsack Problem) Given a set of items N, each with a weight w_i and a value a_i , determine which items to include in the collection so that the total weight is less than or equal to a given limit W and the total value is as large as possible.

Suggested Reading

Thank you!