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What is optimization?

(Merriam-Webster Dictionary) An act, process, or methodology of
making something (such as a design, system, or decision) as fully perfect,
functional, or effective as possible.
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Example 1

(Maximum Area Problem)
You have 80 meters of wire and want to enclose a rectangle as large as
possible (in area). How should you do it?
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Example 2

(Production Problem) A factory can produce two products, A and B. The
production of each item of A takes 2 hours, and that of item B takes 7
hours. Further, each item of products A and B takes 22 and 41 ft3

storage capacity, respectively. The manager gets a profit of $30 and $50
by producing each item of A and B resp. Assuming that there is an
88-hour limit on the number of hours of operating the factory and the
maximum storage capacity of the factory is 9,000ft3, how many items of
A and B should the manager decide to produce to maximize the profit?
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Common Framework

Components of an optimization problem

▶ Decisions

▶ Constraints

▶ Objective

Optimization seeks to choose some decisions to optimize (maximize or
minimize) an objective subject to certain constraints.
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Common Framework

Given f, gi, hi : Rn 7→ R

Z =minimize/maximize
x

f(x) (1a)

subject to gi(x) ≤ 0,∀i = 1, 2, ..., p (1b)

gj(x) ≥ 0,∀j = 1, 2, ..., q (1c)

hk(x) = 0,∀k = 1, 2, ..., r (1d)

▶ Decisions: x, Objective: f(x), and Constraints: (1b)-(1d)

▶ (1b), (1c), and (1d): set of ”≤”, ”≥”, and equality constraints

▶ X = {x ∈ Rn : (1b)− (1d)} define the feasible region.

▶ Any x̂ satisfying all the constraints is a feasible solution.

▶ Any x∗ ∈ X satisfying f(x∗) ≤ f(x),∀x ∈ X is an optimal solution.

▶ f(x∗) is known as optimal objective value.
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A few classes of optimization problems

▶ Linear optimization: f, gi, hi are all affine functions of continuous
variables x.

▶ Non-linear optimization: At least one of f, gi, hi is non-linear
function of continuous variables x.

– Convex optimization: All functions are convex and feasible region is
a convex set

▶ (Mixed) Integer optimization: Some of the variables x are restricted
to be integers.

▶ (Mixed) Integer Non-linear optimization: Some of the variables x are
restricted to be integers and at least one of f, gi, hi is non-linear.

Difficulty of solving above classes rises significantly as we go from above
to below.
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A few definitions

Definition (Maximum) Let S ⊆ R. We say that x is a maximum of S iff
x ∈ S and x ≥ y,∀y ∈ S.

Definition (Minimum) Let S ⊆ R. We say that x is a minimum of S iff
x ∈ S and x ≤ y,∀y ∈ S.

Definition (Bounds) Let S ⊆ R. We say that u is an upper bound of S iff
u ≥ x, ∀x ∈ S. Similarly, l is a lower bound of S iff l ≤ x, ∀x ∈ S.

Definition (Supremum) Let S ⊆ R. We define the supremum of S
denoted by sup(S) to be the smallest upper bound of S. If no such
upper bound exists, then we set sup(S) = +∞.

Definition (Infimum) Let S ⊆ R. We define the infimum of S denoted by
inf(S) to be the largest lower bound of S. If no such lower bound exists,
then we set inf(S) = −∞

Definition If x ∈ S such that x = sup(S), we say that supremum of S is
achieved (which means that there is a maximum to the problem). Similar
definition for whether infimum is achieved.
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General Formulation of LP

Z =minimize/maximize
x

cTx (2a)

subject to aTi x ≤ bi,∀i ∈ C1 (2b)

aTj x ≥ bj ,∀j ∈ C2 (2c)

aTk x = bk,∀k ∈ C3 (2d)

xu ≥ 0,∀u ∈ N1 (2e)

xv ≤ 0,∀v ∈ N2 (2f)

xw free ,∀w ∈ N3 (2g)

where, C1, C2, C3 ⊆ {1, ...,m}, N1, N2, N3 ⊆ {1, ..., n}
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More definitions

Definition (Hyperplane) {x ∈ Rn : aTx = b}

Definition (Halfspace) {x ∈ Rn : aTx ≥ b}

Definition (Polyhedron) A set P ⊆ Rn is called a polyhedron if P is the
intersection of a finite number of halfspaces. P = {x ∈ Rn : Ax ≤ b}

Definition (Polytope) A bounded polyhedron is called a polytope.
Question Is {x ∈ Rn : Ax = b,x ≥ 0} a polyhedron?

Definition (Convex Sets) A set S ⊆ Rn is a convex set if for any
x,y ∈ S, and λ ∈ [0, 1], we have λx+ (1− λ)y ∈ S.
Question Is polyhedron P = {x ∈ Rn : Ax ≤ b} a convex set?

Definition (Convex combination) x ∈ Rn is said to be convex
combination of x1, ...,xp ∈ Rn if for λ1, ..., λp ≥ 0 s.t.

∑n
i λi = 1, x can

be expressed as x =
∑n

i λix
i.

Definition (Extreme point) Let P be a polyhedron. Then, x ∈ P is an
extreme point of P if we cannot express x as a convex combination of
other points in P .
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Theorem
Let P be a non-empty polyhedron. Consider LP max{cTx s.t. x ∈ P}.
Suppose the LP has at least one optimal solution and P has at least one
extreme point. Then, above LP has at least one extreme point of P that
is an optimal solution.
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Possible states of optimization problems

An optimization problem may have the following states:

▶ Infeasible (max problems, Z = −∞ and min problems, Z = +∞)

▶ Feasible, optimal value finite but not attainable

▶ Feasible, optimal value finite and attainable

▶ Feasible, but optimal value is unbounded (max problems, Z = +∞
and min problems, Z = −∞)
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Standard Form of LP1

Z =minimize
x

cTx (3a)

subject to Ax = b (3b)

x ≥ 0 (3c)

where, c ∈ Rn, x ∈ Rn, A ∈ Rm×n (m < n fat matrix), b ∈ Rm

1Following the convention by Bertsimas and Tsitsikilis
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Transformation to Standard Form

▶ To convert maximization of cTx to minimization , write min − cTx

▶ Ax ≤ b =⇒ Ax+ s = b, s ≥ 0, s are called slack variables

▶ Ax ≥ b =⇒ Ax− s = b, s ≥ 0

▶ xi ≤ 0. Define yi = −xi, write yi ≥ 0

▶ Eliminating free variables. Define xi = x+
i − x−

i , write x+
i , x

−
i ≥ 0
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Pointwise maximum/minimum, no problem!

How to linearize functions such as max
i

{aTi x+ bi} & min
i

{aTi x+ bi}?
▶ Define y = max

i
{aTi x+ bi} =⇒ y ≥ aTi x+ bi,∀i

▶ Define y = min
i

{aTi x+ bi} =⇒ y ≤ aTi x+ bi,∀i
How about the following problem?

Z =minimize
x≥0

∥x∥1 =
∑
i

|xi| (4a)

subject to Ax = b (4b)

▶ Note |xi| = max{xi,−xi}. Define yi = |xi|

Z =minimize
x≥0,y

∑
i

yi (5a)

subject to Ax = b (5b)

yi ≥ xi,∀i (5c)

yi ≥ −xi,∀i (5d)
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Pointwise maximum/minimum, no problem!

How about the following problem?

Z =minimize
x≥0

∥x∥∞ = max
i

{|xi|} (6a)

subject to Ax = b (6b)

▶ Define y = maxi{|xi|}

Z =minimize
x≥0,y

y (7a)

subject to Ax = b (7b)

y ≥ xi,∀i (7c)

y ≥ −xi,∀i (7d)
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Linear Fractional Program, no problem!

(Assume that eTx+ f > 0 for any x satisfying Ax = b,x ≥ 0 )

Z =minimize
x≥0

cTx+ d

eTx+ f
(8a)

subject to Ax = b (8b)

▶ Define y = x
eT x+f

, z = 1
eTx+f

. We can equivalently write above
program as an LP.

Z =minimize
y,z

cTy + dz (9a)

subject to Ay − bz = 0 (9b)

eTy + fz = 1 (9c)

z ≥ 0 (9d)
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Linear Integer Program

Z =minimize
x

cTx (10a)

subject to Ax = b (10b)

xi ∈ Z+, i = 1, ..., p (10c)

xi ∈ R+, i = p+ 1, ..., n (10d)

▶ Generally, solving IP is more difficult than solving an LP. We use
various tools from LP to approach this difficult problem.

▶ Better formulating the problem makes a lot of difference.
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Example 3

(Fleet sizing Problem) CEGE 5214 A transit agency is going to optimize
its fleet size and type to maximize its revenue. Possible vehicle types are:

▶ Vans, capacity 6, purchase cost $20, projected revenue $96
▶ Regular buses, capacity 28, purchase cost $120, projected revenue

$400
▶ Articulated buses, capacity 56, purchase cost $220, projected

revenue $900
Constraints:

▶ Available budget is $2,000
▶ The agency has 25 drivers who have 20% vacation/sick/no-show

rate
▶ The fleet should provide a minimum capacity of 450
▶ At least 30% of the fleet should be vans for demand-responsive

service
▶ At least 10 regular buses are needed for the fixed routes
▶ Exactly 2 articulated buses are needed for an express route
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Example 4

(Support Vector Machine Problem) Given two groups of data points in
Rd , A = {x1, ..., xn} and B = {y1, ..., ym}, find a plane that separates
them.
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Network Flow Problems

Examples 25



Example 5

(Minimum cost flow problem) Given a directed graph G(N,A), cost of
traversing links c : A 7→ R, lower and upper bounds (capacity) on the
flow on links l : A 7→ R and u : A 7→ R resp., and supply/demand at
each node b : N 7→ R, find the least cost shipment of a commodity. Note
b(i) > 0 for a supply nodes, b(i) < 0 for demand nodes, and b(i) = 0 for
transshipment nodes.
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Example 6

(Shortest path problem) Given a directed graph G(N,A), cost of
traversing links c : A 7→ R, find the shortest path from s ∈ N to t ∈ N .
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Example 7

(Maximum flow problem) Given a directed graph G(N,A), cost of
traversing links c : A 7→ R, and capacities of links u : A 7→ R, find the
maximum flow possible to send from s ∈ N to t ∈ N .
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Example 8

(Assignment problem) Given a bipartite graph G(N1 ∪N2, A) and cost of
assignment c : A 7→ R, find the least cost assignment of items in N1 to
items in N2.

Examples 29



Example 9

(Transportation Problem) We have n factories each supplying ai units of
construction lumber and m cities each with bi demand of lumber. If the
transportation cost of each unit from factory i to city j is cij , formulate
a program that minimizes the total transportation cost while serving the
demand in all the cities.
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Integer Problems
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Example 10

(Vertex cover problem) Given a graph G(N,A), find the smallest set of
vertices that touch every edge of the graph.
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Example 11

(Traveling Salesman Problem) A salesman needs to visit a number of
places in a day. How should he schedule her trip so that the total
distance is shortest (or the total cost is smallest)?
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Example 12

(Knapsack Problem) Given a set of items N , each with a weight wi and
a value ai, determine which items to include in the collection so that the
total weight is less than or equal to a given limit W and the total value is
as large as possible.
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Suggested Reading

▶ VR Chapter 1
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Thank you!
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