Modeling Optimization Problems

Pramesh Kumar

IIT Delhi

January 30, 2024

Outline

[Motivation](#page-1-0)

[Optimization Framework](#page-5-0)

[Standard form and reformulations](#page-14-0)

[Examples](#page-21-0)

[Motivation](#page-1-0) 2

What is optimization?

(Merriam-Webster Dictionary) An act, process, or methodology of making something (such as a design, system, or decision) as fully perfect, functional, or effective as possible.

(Maximum Area Problem)

You have 80 meters of wire and want to enclose a rectangle as large as possible (in area). How should you do it?

[Motivation](#page-1-0) 4

(Production Problem) A factory can produce two products, A and B. The production of each item of A takes 2 hours, and that of item B takes 7 hours. Further, each item of products A and B takes 22 and 41 ft^3 storage capacity, respectively. The manager gets a profit of \$30 and \$50 by producing each item of A and B resp. Assuming that there is an 88-hour limit on the number of hours of operating the factory and the maximum storage capacity of the factory is $9{,}000 ft^3$, how many items of A and B should the manager decide to produce to maximize the profit?

Outline

[Motivation](#page-1-0)

[Optimization Framework](#page-5-0)

[Standard form and reformulations](#page-14-0)

[Examples](#page-21-0)

Common Framework

Components of an optimization problem

- \blacktriangleright Decisions
- \blacktriangleright Constraints
- ▶ Objective

Optimization seeks to choose some decisions to optimize (maximize or minimize) an objective subject to certain constraints.

Common Framework

Given $f, g_i, h_i : \mathbb{R}^n \mapsto \mathbb{R}$ $Z =$ minimize/maximize x $f(\mathbf{x})$ (1a) subject to $g_i(\mathbf{x}) \leq 0, \forall i = 1, 2, ..., p$ (1b) $g_i(\mathbf{x}) \geq 0, \forall j = 1, 2, ..., q$ (1c) $h_k(\mathbf{x}) = 0, \forall k = 1, 2, ..., r$ (1d)

▶ Decisions: x, Objective: $f(x)$, and Constraints: [\(1b\)](#page-7-0)-[\(1d\)](#page-7-1)

- ▶ [\(1b\)](#page-7-0), [\(1c\)](#page-7-2), and [\(1d\)](#page-7-1): set of " \leq ", " \geq ", and equality constraints
- $\triangleright \ \mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n : (1b) (1d) \}$ $\triangleright \ \mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n : (1b) (1d) \}$ $\triangleright \ \mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n : (1b) (1d) \}$ $\triangleright \ \mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n : (1b) (1d) \}$ $\triangleright \ \mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n : (1b) (1d) \}$ define the feasible region.
- Any \hat{x} satisfying all the constraints is a feasible solution.
- Any $x^* \in \mathcal{X}$ satisfying $f(x^*) \leq f(x), \forall x \in \mathcal{X}$ is an optimal solution.
- ▶ $f(\mathbf{x}^*)$ is known as optimal objective value.

A few classes of optimization problems

- \blacktriangleright Linear optimization: f, g_i, h_i are all affine functions of continuous variables x .
- \blacktriangleright Non-linear optimization: At least one of f, g_i, h_i is non-linear function of continuous variables x .
	- Convex optimization: All functions are convex and feasible region is a convex set
- \blacktriangleright (Mixed) Integer optimization: Some of the variables x are restricted to be integers.
- \blacktriangleright (Mixed) Integer Non-linear optimization: Some of the variables x are restricted to be integers and at least one of f,g_i,h_i is non-linear.

Difficulty of solving above classes rises significantly as we go from above to below.

A few definitions

Definition (Maximum) Let $S \subseteq \mathbb{R}$. We say that x is a maximum of S iff $x \in S$ and $x \geq y, \forall y \in S$.

Definition (Minimum) Let $S \subseteq \mathbb{R}$. We say that x is a minimum of S iff $x \in S$ and $x \leq y, \forall y \in S$.

Definition (Bounds) Let $S \subseteq \mathbb{R}$. We say that u is an upper bound of S iff $u > x, \forall x \in S$. Similarly, l is a lower bound of S iff $l \leq x, \forall x \in S$.

Definition (Supremum) Let $S \subseteq \mathbb{R}$. We define the supremum of S denoted by $\sup(S)$ to be the smallest upper bound of S. If no such upper bound exists, then we set $\text{sup}(S) = +\infty$.

Definition (Infimum) Let $S \subseteq \mathbb{R}$. We define the infimum of S denoted by $\inf(S)$ to be the largest lower bound of S. If no such lower bound exists, then we set $\inf(S) = -\infty$

Definition If $x \in S$ such that $x = \sup(S)$, we say that supremum of S is achieved (which means that there is a maximum to the problem). Similar definition for whether infimum is achieved.

General Formulation of LP

where, $C_1, C_2, C_3 \subseteq \{1, ..., m\}$, $N_1, N_2, N_3 \subseteq \{1, ..., n\}$

More definitions

Definition (Hyperplane) $\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T\mathbf{x} = b \}$

Definition (Halfspace) $\{ \mathbf{x} \in \mathbb{R}^n : \mathbf{a}^T\mathbf{x} \geq b \}$

Definition (Polyhedron) A set $P \subseteq \mathbb{R}^n$ is called a polyhedron if P is the intersection of a finite number of halfspaces. $P = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b} \}$

Definition (Polytope) A bounded polyhedron is called a polytope. Question Is $\{x \in \mathbb{R}^n : A x = b, x \ge 0\}$ a polyhedron?

Definition (Convex Sets) A set $S \subseteq \mathbb{R}^n$ is a convex set if for any $x, y \in S$, and $\lambda \in [0, 1]$, we have $\lambda x + (1 - \lambda)y \in S$. Question Is polyhedron $P = \{ \mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b} \}$ a convex set?

Definition (Convex combination) $\mathbf{x} \in \mathbb{R}^n$ is said to be convex combination of $\mathbf{x}^1,...,\mathbf{x}^p\in\mathbb{R}^n$ if for $\lambda_1,...,\lambda_p\geq 0$ s.t. $\sum_i^n\lambda_i=1$, $\mathbf x$ can be expressed as $\mathbf{x} = \sum_i^n \lambda_i \mathbf{x}^i$.

Definition (Extreme point) Let P be a polyhedron. Then, $\mathbf{x} \in P$ is an extreme point of P if we cannot express x as a convex combination of other points in P .

Theorem

Let P be a non-empty polyhedron. Consider LP $\max\{c^T x \text{ s.t. } x \in P\}.$ Suppose the LP has at least one optimal solution and P has at least one extreme point. Then, above LP has at least one extreme point of P that is an optimal solution.

Possible states of optimization problems

An optimization problem may have the following states:

- ▶ Infeasible (max problems, $Z = -\infty$ and min problems, $Z = +\infty$)
- \blacktriangleright Feasible, optimal value finite but not attainable
- \blacktriangleright Feasible, optimal value finite and attainable
- ▶ Feasible, but optimal value is unbounded (max problems, $Z = +\infty$ and min problems, $Z = -\infty$)

Outline

[Motivation](#page-1-0)

[Optimization Framework](#page-5-0)

[Standard form and reformulations](#page-14-0)

[Examples](#page-21-0)

[Standard form and reformulations](#page-14-0) 15

Standard Form of LP¹

$Z = \text{minimize}$	$c^T x$	(3a)
subject to	$Ax = b$	(3b)
$x \ge 0$	(3c)	

where, $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^n$, $A \in \mathbb{R}^{m \times n}$ $(m < n$ fat matrix), $\mathbf{b} \in \mathbb{R}^m$

¹Following the convention by Bertsimas and Tsitsikilis [Standard form and reformulations](#page-14-0) 16

Transformation to Standard Form

- ▶ To convert maximization of $e^T x$ to minimization, write min $-e^T x$
- \triangleright $Ax < b \implies Ax + s = b, s > 0$, s are called slack variables
- \blacktriangleright Ax > b \implies Ax s = b, s > 0
- ▶ $x_i \leq 0$. Define $y_i = -x_i$, write $y_i \geq 0$
- ▶ Eliminating free variables. Define $x_i = x_i^+ x_i^-$, write $x_i^+, x_i^- \ge 0$

Pointwise maximum/minimum, no problem!

How to linearize functions such as $\max\limits_i \ \{ \mathbf a_i^T x + b_i \}$ & $\min\limits_i \ \{ \mathbf a_i^T x + b_i \}$? ▶ Define $y = \max_i {\{\mathbf{a}_i^T \mathbf{x} + b_i\}} \implies y \ge \mathbf{a}_i^T \mathbf{x} + b_i, \forall i$ ▶ Define $y = \min_i \{\mathbf{a}_i^T \mathbf{x} + b_i\} \implies y \leq \mathbf{a}_i^T \mathbf{x} + b_i, \forall i$ How about the following problem?

 $Z =$ minimize $x>0$ $\|\mathbf{x}\|_1 = \sum |x_i|$ i $(4a)$ subject to $A\mathbf{x} = \mathbf{b}$ (4b) ▶ Note $|x_i| = \max\{x_i, -x_i\}$. Define $y_i = |x_i|$

 $y_i \geq -x_i, \forall i$

[Standard form and reformulations](#page-14-0) 18

 $(5d)$

Pointwise maximum/minimum, no problem!

How about the following problem?

[Standard form and reformulations](#page-14-0) 19

Linear Fractional Program, no problem!

(Assume that ${\bf e}^T{\bf x}+f>0$ for any ${\bf x}$ satisfying $A{\bf x}={\bf b},{\bf x}\geq0$)

$$
Z = \underset{\mathbf{x} \ge 0}{\text{minimize}} \qquad \qquad \frac{\mathbf{c}^T \mathbf{x} + d}{\mathbf{e}^T \mathbf{x} + f} \qquad \qquad \text{(8a)}
$$
\nsubject to\n
$$
A\mathbf{x} = \mathbf{b} \qquad \qquad \text{(8b)}
$$

▶ Define $y = \frac{x}{e^Tx + f}$, $z = \frac{1}{e^Tx + f}$. We can equivalently write above program as an LP.

$$
Z = \underset{\mathbf{y}, z}{\text{minimize}} \qquad \qquad \mathbf{c}^T \mathbf{y} + dz \qquad (9a)
$$

subject to
$$
A\mathbf{y} - \mathbf{b}z = 0 \qquad (9b)
$$

$$
\mathbf{e}^T \mathbf{y} + f z = 1 \tag{9c}
$$

$$
z \geq 0 \tag{9d}
$$

[Standard form and reformulations](#page-14-0) 20 and 20 and

Linear Integer Program

$Z = \text{minimize}$	$\mathbf{c}^{T} \mathbf{x}$	(10a)
subject to	$A\mathbf{x} = \mathbf{b}$	(10b)
$x_i \in \mathbb{Z}_+, i = 1, ..., p$	(10c)	
$x_i \in \mathbb{R}_+, i = p + 1, ..., n$	(10d)	

- \triangleright Generally, solving IP is more difficult than solving an LP. We use various tools from LP to approach this difficult problem.
- ▶ Better formulating the problem makes a lot of difference.

Outline

[Motivation](#page-1-0)

[Optimization Framework](#page-5-0)

[Standard form and reformulations](#page-14-0)

[Examples](#page-21-0)

(Fleet sizing Problem) CEGE 5214 A transit agency is going to optimize its fleet size and type to maximize its revenue. Possible vehicle types are:

- ▶ Vans, capacity 6, purchase cost \$20, projected revenue \$96
- ▶ Regular buses, capacity 28, purchase cost \$120, projected revenue \$400
- ▶ Articulated buses, capacity 56, purchase cost \$220, projected revenue \$900

Constraints:

- ▶ Available budget is \$2,000
- \triangleright The agency has 25 drivers who have 20% vacation/sick/no-show rate
- \blacktriangleright The fleet should provide a minimum capacity of 450
- \blacktriangleright At least 30% of the fleet should be vans for demand-responsive service
- \triangleright At least 10 regular buses are needed for the fixed routes
- ▶ Exactly 2 articulated buses are needed for an express route

(Support Vector Machine Problem) Given two groups of data points in \mathbb{R}^d , $A=\{x_1,...,x_n\}$ and $B=\{y_1,...,y_m\}$, find a plane that separates them.

Network Flow Problems

(Minimum cost flow problem) Given a directed graph $G(N, A)$, cost of traversing links $c : A \mapsto \mathbb{R}$, lower and upper bounds (capacity) on the flow on links $l : A \mapsto \mathbb{R}$ and $u : A \mapsto \mathbb{R}$ resp., and supply/demand at each node $b : N \mapsto \mathbb{R}$, find the least cost shipment of a commodity. Note $b(i) > 0$ for a supply nodes, $b(i) < 0$ for demand nodes, and $b(i) = 0$ for transshipment nodes.

(Shortest path problem) Given a directed graph $G(N, A)$, cost of traversing links $c : A \mapsto \mathbb{R}$, find the shortest path from $s \in N$ to $t \in N$.

(Maximum flow problem) Given a directed graph $G(N, A)$, cost of traversing links $c : A \mapsto \mathbb{R}$, and capacities of links $u : A \mapsto \mathbb{R}$, find the maximum flow possible to send from $s \in N$ to $t \in N$.

(Assignment problem) Given a bipartite graph $G(N_1 \cup N_2, A)$ and cost of assignment $c : A \mapsto \mathbb{R}$, find the least cost assignment of items in N_1 to items in N_2 .

(Transportation Problem) We have n factories each supplying a_i units of construction lumber and m cities each with b_i demand of lumber. If the transportation cost of each unit from factory i to city j is c_{ij} , formulate a program that minimizes the total transportation cost while serving the demand in all the cities.

Integer Problems

(Vertex cover problem) Given a graph $G(N, A)$, find the smallest set of vertices that touch every edge of the graph.

(Traveling Salesman Problem) A salesman needs to visit a number of places in a day. How should he schedule her trip so that the total distance is shortest (or the total cost is smallest)?

(Knapsack Problem) Given a set of items N, each with a weight w_i and a value a_i , determine which items to include in the collection so that the total weight is less than or equal to a given limit W and the total value is as large as possible.

Suggested Reading

Thank you!